
Engineering Software
Integral types

Andrei Zlate-Podani

1968 NATO Software Engineering Conference - Garmisch

2

• Projects running over-budget

• Projects running over-time

• Software was inefficient

• Software was of low quality

• Software often did not meet requirements

• Projects were unmanageable and code difficult to maintain

• Software was never delivered

Writing software is bottom – up

3

• Larger constructs are built by using basic operations and / or calling functions.

• To preserve correctness it is necessary, but not sufficient, to satisfy the preconditions of the
basic operations and functions.

• Any errors need to be detected and reported to the next layer, unless they are dealt with locally.

Contracts

4

Contracts – find_if_not

• No conversion from iterator’s value type to predicate’s parameter type.

• Assume a range of float and a predicate that takes int

• The values in the range must be independent of the adjoining ones

• Assume a range over an UTF-8 string

• The meaning associated with the values must be the same in the range and in the predicate.

• Assume that the predicate is looking values in the metric system and the range uses

imperial measures.

5

bool

6

• false – true + true == false
• false XOR true OR true == true

Characters

7

• char distinct from signed char and unsigned char

• wchar_t distinct type, sign and size are implementation defined

• char16_t and char32_t are not fixed size

• Numerical values who’s meaning is given by the encoding

• The Unicode standard defines an N-to-1 relationship between code-points and glyphs

Å
• U+00C5 (latin capital letter a with ring above)
• U+212B (ångström symbol)
• U+0041 U+030A ('A’ + combining ring above)

8

9

10

11

12

13

// Insert coded character, using UTF8 or 8-bit ASCII
template<int Flags>
void insert_coded_character(Ch *&text, ulong code)
{

if (Flags & parse_no_utf8)
{

// Insert 8-bit ASCII character
}
else
{

// Insert UTF8 sequence

Broken

14

Properties for signed integers

15

• Addition is associative – partially

• Addition is commutative – partially for sequences

• Multiplication is associative & commutative – yes

• Multiplication is distributive – partially

• Division is distributive ((a + b) / c) – no

• Division is the inverse of multiplication – partially

• Multiplication if the inverse of division – no

Integral promotions

16

boost::accumulators

17

User’s guide

18

Reference

19

20

What about overflow?

21

C++17 added GCD & LCM support

22

LCM

23

• lcm(65537, 65539) = 262‘147

• Actually it’s 4'295'229'443

• or 0x1'0004'0003

• or 33 bits

24

Unsafe operations

25

• <numeric> header

reduce

inner_product

inclusive_scan

exclusive_scan

transform_reduce

partial_sum

transform_exclusive_scan

transform_inclusive_scan

adjacent_difference

• <valarray> header

T sum();

operator *=

operator /=

operator +=

operator -=

So how do you detect overflows?

26

• The processor does it for you for free!

• The standard provides

imaxdiv_t imaxdiv(intmax_t number, intmax_t denom);

• But no add, subtract, multiply nor other division functions

• We can use compiler extensions, write our own assembly routines or simulate the operations in
code

Addition and subtraction

27

Multiplication

28

Multiplication

29

Division

30

31

32

33

Let’s fix accumulate

34

Haskell

35

Concluding remarks

36

• The standard library could help us by providing add, sub, mul and div variants

• Abstracting away essential details leads to incorrect code and APIs. (LSP for templates)

• It is very easy to create unusable interfaces

• The documentation is part of the API. If any pre-condition or behavior changes, the API itself has
changed

• We need libraries that provide reliable, safe and portable implementations and APIs

Questions

37

• Hacker’s Delight 2nd Ed. by Henry S. Warren, Jr., ISBN 0-321-84268-5

• The Art of Computer Programming: Seminumerical Algorithms by Donald Knuth

• Burnikel C., Ziegler J., “Fast Recursive Division”, MPI-I-98-1-022

• Hansen, Per Brinch, "Multiple-Length Division Revisited: A Tour of the Minefield"

• https://www.haskell.org/onlinereport/haskell2010/haskellch6.html#x13-1350006.4

azlatepodani@gmail.com

Is this a realistic precondition?

38

Bugs in the wild

39

• CVE-2016-5223 Integer overflow in […] Google Chrome prior to 55.0.2883.75…

• CVE-2017-14051 An integer overflow in […] the Linux kernel through 4.12.10…

• CVE-2017-7529 Nginx versions […] are vulnerable to integer overflow…

• CVE-2017-3738 There is an overflow bug in the AVX2 Montgomery multiplication procedure […]
OpenSSL…

