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• Projects running over-budget

• Projects running over-time

• Software was inefficient

• Software was of low quality

• Software often did not meet requirements

• Projects were unmanageable and code difficult to maintain

• Software was never delivered



Writing software is bottom – up
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• Larger constructs are built by using basic operations and / or calling functions.

• To preserve correctness it is necessary, but not sufficient, to satisfy the preconditions of the 
basic operations and functions.

• Any errors need to be detected and reported to the next layer, unless they are dealt with locally.



Contracts
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Contracts – find_if_not

• No conversion from iterator’s value type to predicate’s parameter type.

• Assume a range of float and a predicate that takes int

• The values in the range must be independent of the adjoining ones

• Assume a range over an UTF-8 string

• The meaning associated with the values must be the same in the range and in the predicate.

• Assume that the predicate is looking values in the metric system and the range uses 

imperial measures.
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bool
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• false – true + true == false
• false XOR true OR true == true



Characters

7

• char distinct from signed char and unsigned char

• wchar_t distinct type, sign and size are implementation defined

• char16_t and char32_t are not fixed size

• Numerical values who’s meaning is given by the encoding

• The Unicode standard defines an N-to-1 relationship between code-points and glyphs



Å
• U+00C5 (latin capital letter a with ring above)
• U+212B (ångström symbol)
• U+0041 U+030A ('A’ + combining ring above)
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// Insert coded character, using UTF8 or 8-bit ASCII
template<int Flags>
void insert_coded_character(Ch *&text, ulong code)
{

if (Flags & parse_no_utf8)
{

// Insert 8-bit ASCII character
}
else
{

// Insert UTF8 sequence



Broken
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Properties for signed integers
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• Addition is associative – partially

• Addition is commutative – partially for sequences

• Multiplication is associative & commutative – yes

• Multiplication is distributive – partially

• Division is distributive ( (a + b) / c ) – no

• Division is the inverse of multiplication – partially

• Multiplication if the inverse of division – no



Integral promotions
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boost::accumulators
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User’s guide
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Reference
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What about overflow?
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C++17 added GCD & LCM support
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LCM
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• lcm(65537, 65539) = 262‘147

• Actually it’s   4'295'229'443

• or 0x1'0004'0003

• or 33 bits
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Unsafe operations
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• <numeric> header

reduce

inner_product

inclusive_scan

exclusive_scan

transform_reduce

partial_sum

transform_exclusive_scan

transform_inclusive_scan

adjacent_difference

• <valarray> header

T sum();

operator *=

operator /=

operator +=

operator -=



So how do you detect overflows?
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• The processor does it for you for free!

• The standard provides 

imaxdiv_t imaxdiv(intmax_t number, intmax_t denom);

• But no add, subtract, multiply nor other division functions

• We can use compiler extensions, write our own assembly routines or simulate the operations in 
code



Addition and subtraction

27



Multiplication
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Multiplication
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Division
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Let’s fix accumulate
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Haskell
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Concluding remarks
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• The standard library could help us by providing add, sub, mul and div variants

• Abstracting away essential details leads to incorrect code and APIs. (LSP for templates)

• It is very easy to create unusable interfaces

• The documentation is part of the API. If any pre-condition or behavior changes, the API itself has 
changed

• We need libraries that provide reliable, safe and portable implementations and APIs



Questions
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• Hacker’s Delight 2nd Ed. by Henry S. Warren, Jr., ISBN 0-321-84268-5

• The Art of Computer Programming: Seminumerical Algorithms by Donald Knuth

• Burnikel C., Ziegler J., “Fast Recursive Division”, MPI-I-98-1-022

• Hansen, Per Brinch, "Multiple-Length Division Revisited: A Tour of the Minefield"

• https://www.haskell.org/onlinereport/haskell2010/haskellch6.html#x13-1350006.4

azlatepodani@gmail.com



Is this a realistic precondition?
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Bugs in the wild
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• CVE-2016-5223 Integer overflow in […] Google Chrome prior to 55.0.2883.75…

• CVE-2017-14051 An integer overflow in […] the Linux kernel through 4.12.10…

• CVE-2017-7529 Nginx versions […] are vulnerable to integer overflow…

• CVE-2017-3738 There is an overflow bug in the AVX2 Montgomery multiplication procedure […] 
OpenSSL…


